
System and Administrative Commands

The startup and shutdown scripts in /etc/rc.d illustrate the uses of many of these commands.
They are usually invoked by root and used for system maintenance or file system repairs. The
commands must be used with caution, as some of these commands may damage your system.

Users and Groups

users

Show all logged on users. This is the approximate equivalent of who -q.

groups

Lists the current user and the groups she belongs to. This corresponds to the $GROUPS
internal variable, but gives the group names, rather than the numbers.

bash$ groups
bozita cdrom cdwriter audio xgrp

bash$ echo $GROUPS
501

chown, chgrp

The chown command changes the ownership of a file or files. This command is used by
root to shift file ownership from one user to another. An ordinary user may not change the
ownership of files, not even their own files. [1]

root# chown bozo *.txt

The chgrp command changes the group ownership of a file or files. You must be owner
of the file(s) as well as a member of the destination group (or root) to use this operation.

chgrp --recursive billybob *.data
The "billybob" group will now own all the "*.data" files
#+ all the way down the $PWD directory tree (that's what "recursive" means).

useradd, userdel

The useradd administrative command adds a user account to the system and creates a
home directory for that particular user, if so specified. The corresponding userdel
command removes a user account from the system [2] and deletes associated files.

The adduser command is a synonym for useradd and is usually a symbolic link to
it.

usermod

Modify a user account. Changes may be made to the password, group membership,
expiration date, and other attributes of a given user's account. With this command, a
user's password may be locked, which has the effect of disabling the account.

groupmod

Modify a given group. The group name and/or ID number may be changed using this
command.

id

The id command lists the real and effective user IDs and the group IDs of the user
associated with the current process. This is the counterpart to the $UID, $EUID, and
$GROUPS internal Bash variables.

bash$ id
uid=501(bozo) gid=501(bozo) groups=501(bozo),22(cdrom),80(cdwriter),81(audio)

bash$ echo $UID
501

The id command shows the effective IDs only when they differ from the real ones.

Also see Example 9-5.

who

Show all users logged on to the system.

bash$ who
bozo tty1 Apr 27 17:45
 bozo pts/0 Apr 27 17:46
 bozo pts/1 Apr 27 17:47
 bozo pts/2 Apr 27 17:49

The -m gives detailed information about only the current user. Passing any two
arguments to who is the equivalent of who -m, as in who am i or who The Man.

bash$ who -m
localhost.localdomain!bozo pts/2 Apr 27 17:49

whoami is similar to who -m, but only lists the user name.

bash$ whoami
bozo

w

Show all logged on users and the processes belonging to them. This is an extended
version of who. The output of w may be piped to grep to find a specific user and/or
process.

bash$ w | grep startx
bozo tty1 - 4:22pm 6:41 4.47s 0.45s startx

logname

Show current user's login name (as found in /var/run/utmp). This is a near-equivalent to
whoami, above.

bash$ logname
bozo

bash$ whoami
bozo

However...

bash$ su
Password:

bash# whoami
root

bash# logname
bozo

While logname prints the name of the logged in user, whoami gives the name of
the user attached to the current process. As we have just seen, sometimes these
are not the same.

su

Runs a program or script as a substitute user. su rjones starts a shell as user rjones. A
naked su defaults to root. See Example A-15.

sudo

Runs a command as root (or another user). This may be used in a script, thus permitting
a regular user to run the script.

#!/bin/bash

Some commands.
sudo cp /root/secretfile /home/bozo/secret
Some more commands.

The file /etc/sudoers holds the names of users permitted to invoke sudo.

passwd

Sets, changes, or manages a user's password.
The passwd command can be used in a script, but should not be.

Example 13-1. Setting a new password

#!/bin/bash
setnew-password.sh: For demonstration purposes only.
Not a good idea to actually run this script.
This script must be run as root.

ROOT_UID=0 # Root has $UID 0.
E_WRONG_USER=65 # Not root?

E_NOSUCHUSER=70
SUCCESS=0

if ["$UID" -ne "$ROOT_UID"]
then
 echo; echo "Only root can run this script."; echo
 exit $E_WRONG_USER
else
 echo
 echo "You should know better than to run this script, root."
 echo "Even root users get the blues... "
 echo
fi

username=bozo
NEWPASSWORD=security_violation

Check if bozo lives here.
grep -q "$username" /etc/passwd
if [$? -ne $SUCCESS]
then
 echo "User $username does not exist."
 echo "No password changed."
 exit $E_NOSUCHUSER
fi

echo "$NEWPASSWORD" | passwd --stdin "$username"
The '--stdin' option to 'passwd' permits
#+ getting a new password from stdin (or a pipe).

echo; echo "User $username's password changed!"

Using the 'passwd' command in a script is dangerous.

exit 0

The passwd command's -l, -u, and -d options permit locking, unlocking, and
deleting a user's password. Only root may use these options.

ac

Show users' logged in time, as read from /var/log/wtmp. This is one of the GNU
accounting utilities.

bash$ ac

 total 68.08

last

List last logged in users, as read from /var/log/wtmp. This command can also
show remote logins.

For example, to show the last few times the system rebooted:

bash$ last reboot

reboot system boot 2.6.9-1.667 Fri Feb 4 18:18

(00:02)

 reboot system boot 2.6.9-1.667 Fri Feb 4 15:20

(01:27)

 reboot system boot 2.6.9-1.667 Fri Feb 4 12:56

(00:49)

 reboot system boot 2.6.9-1.667 Thu Feb 3 21:08

(02:17)

 . . .

 wtmp begins Tue Feb 1 12:50:09 2005

newgrp

Change user's group ID without logging out. This permits access to the new
group's files. Since users may be members of multiple groups simultaneously, this
command finds little use.

Terminals

tty

Echoes the name of the current user's terminal. Note that each separate xterm
window counts as a different terminal.

bash$ tty

/dev/pts/1

stty

Shows and/or changes terminal settings. This complex command, used in a script,
can control terminal behavior and the way output displays. See the info page, and
study it carefully.

Example 13-2. Setting an erase character

#!/bin/bash

erase.sh: Using "stty" to set an erase character when reading

input.

echo -n "What is your name? "

read name # Try to backspace

 #+ to erase characters of input.

 # Problems?

echo "Your name is $name."

stty erase '#' # Set "hashmark" (#) as erase

character.

echo -n "What is your name? "

read name # Use # to erase last character

typed.

echo "Your name is $name."

Warning: Even after the script exits, the new key value

remains set.

exit 0

Example 13-3. secret password: Turning off terminal echoing

#!/bin/bash

secret-pw.sh: secret password

echo

echo -n "Enter password "

read passwd

echo "password is $passwd"

echo -n "If someone had been looking over your shoulder, "

echo "your password would have been compromised."

echo && echo # Two line-feeds in an "and list."

stty -echo # Turns off screen echo.

echo -n "Enter password again "

read passwd

echo

echo "password is $passwd"

echo

stty echo # Restores screen echo.

exit 0

Do an 'info stty' for more on this useful-but-tricky command.

A creative use of stty is detecting a user keypress (without hitting ENTER).

Example 13-4. Keypress detection

#!/bin/bash

keypress.sh: Detect a user keypress ("hot keys").

echo

old_tty_settings=$(stty -g) # Save old settings (why?).

stty -icanon

Keypress=$(head -c1) # or $(dd bs=1 count=1 2>

/dev/null)

 # on non-GNU systems

echo

echo "Key pressed was \""$Keypress"\"."

echo

stty "$old_tty_settings" # Restore old settings.

Thanks, Stephane Chazelas.

exit 0

Also see Example 9-3.

terminals and modes

Normally, a terminal works in the canonical mode. When a user hits a key, the
resulting character does not immediately go to the program actually running in
this terminal. A buffer local to the terminal stores keystrokes. When the user hits
the ENTER key, this sends all the stored keystrokes to the program running.
There is even a basic line editor inside the terminal.

bash$ stty -a

speed 9600 baud; rows 36; columns 96; line = 0;

 intr = ^C; quit = ^\; erase = ^H; kill = ^U; eof = ^D;

eol = <undef>; eol2 = <undef>;

 start = ^Q; stop = ^S; susp = ^Z; rprnt = ^R; werase =

^W; lnext = ^V; flush = ^O;

 ...

 isig icanon iexten echo echoe echok -echonl -noflsh -

xcase -tostop -echoprt

Using canonical mode, it is possible to redefine the special keys for the local

terminal line editor.

bash$ cat > filexxx

wha<ctl-W>I<ctl-H>foo bar<ctl-U>hello world<ENTER>

<ctl-D>

bash$ cat filexxx

hello world

bash$ wc -c < filexxx

12

The process controlling the terminal receives only 12 characters (11 alphabetic
ones, plus a newline), although the user hit 26 keys.

In non-canonical ("raw") mode, every key hit (including special editing keys such
as ctl-H) sends a character immediately to the controlling process.

The Bash prompt disables both icanon and echo, since it replaces the basic
terminal line editor with its own more elaborate one. For example, when you hit
ctl-A at the Bash prompt, there's no ^A echoed by the terminal, but Bash gets a \1
character, interprets it, and moves the cursor to the begining of the line.

Stéphane Chazelas

setterm

Set certain terminal attributes. This command writes to its terminal's stdout a
string that changes the behavior of that terminal.

bash$ setterm -cursor off

bash$

The setterm command can be used within a script to change the appearance of

text written to stdout, although there are certainly better tools available for this
purpose.

setterm -bold on

echo bold hello

setterm -bold off

echo normal hello

tset

Show or initialize terminal settings. This is a less capable version of stty.

bash$ tset -r

Terminal type is xterm-xfree86.

 Kill is control-U (^U).

 Interrupt is control-C (^C).

setserial

Set or display serial port parameters. This command must be run by root user and
is usually found in a system setup script.

From /etc/pcmcia/serial script:

IRQ=`setserial /dev/$DEVICE | sed -e 's/.*IRQ: //'`

setserial /dev/$DEVICE irq 0 ; setserial /dev/$DEVICE irq $IRQ

getty, agetty

The initialization process for a terminal uses getty or agetty to set it up for login
by a user. These commands are not used within user shell scripts. Their scripting
counterpart is stty.

mesg

Enables or disables write access to the current user's terminal. Disabling access
would prevent another user on the network to write to the terminal.

It can be very annoying to have a message about ordering pizza suddenly
appear in the middle of the text file you are editing. On a multi-user
network, you might therefore wish to disable write access to your terminal
when you need to avoid interruptions.

wall

This is an acronym for "write all", i.e., sending a message to all users at every
terminal logged into the network. It is primarily a system administrator's tool,
useful, for example, when warning everyone that the system will shortly go down
due to a problem (see Example 17-1).

bash$ wall System going down for maintenance in 5 minutes!

Broadcast message from bozo (pts/1) Sun Jul 8 13:53:27 2001...

 System going down for maintenance in 5 minutes!

If write access to a particular terminal has been disabled with mesg, then
wall cannot send a message to it.

Information and Statistics

uname

Output system specifications (OS, kernel version, etc.) to stdout. Invoked with
the -a option, gives verbose system info (see Example 12-5). The -s option
shows only the OS type.

bash$ uname -a

Linux localhost.localdomain 2.2.15-2.5.0 #1 Sat Feb 5 00:13:43

EST 2000 i686 unknown

bash$ uname -s

Linux

arch

Show system architecture. Equivalent to uname -m. See Example 10-26.

bash$ arch

i686

bash$ uname -m

i686

lastcomm

Gives information about previous commands, as stored in the

/var/account/pacct file. Command name and user name can be specified by
options. This is one of the GNU accounting utilities.

lastlog

List the last login time of all system users. This references the

/var/log/lastlog file.

bash$ lastlog

root tty1 Fri Dec 7 18:43:21 -

0700 2001

 bin **Never logged in**

 daemon **Never logged in**

 ...

 bozo tty1 Sat Dec 8 21:14:29 -

0700 2001

bash$ lastlog | grep root

root tty1 Fri Dec 7 18:43:21 -

0700 2001

This command will fail if the user invoking it does not have read permission

for the /var/log/lastlog file.

lsof

List open files. This command outputs a detailed table of all currently open files
and gives information about their owner, size, the processes associated with them,
and more. Of course, lsof may be piped to grep and/or awk to parse and analyze
its results.

bash$ lsof

COMMAND PID USER FD TYPE DEVICE SIZE NODE

NAME

 init 1 root mem REG 3,5 30748 30303

/sbin/init

 init 1 root mem REG 3,5 73120 8069

/lib/ld-2.1.3.so

 init 1 root mem REG 3,5 931668 8075

/lib/libc-2.1.3.so

 cardmgr 213 root mem REG 3,5 36956 30357

/sbin/cardmgr

 ...

strace

Diagnostic and debugging tool for tracing system calls and signals. The simplest
way of invoking it is strace COMMAND.

bash$ strace df

execve("/bin/df", ["df"], [/* 45 vars */]) = 0

 uname({sys="Linux", node="bozo.localdomain", ...}) = 0

 brk(0) = 0x804f5e4

 ...

This is the Linux equivalent of the Solaris truss command.

nmap

Network mapper and port scanner. This command scans a server to locate open
ports and the services associated with those ports. It can also report information
about packet filters and firewalls. This is an important security tool for locking
down a network against hacking attempts.

#!/bin/bash

SERVER=$HOST # localhost.localdomain

(127.0.0.1).

PORT_NUMBER=25 # SMTP port.

nmap $SERVER | grep -w "$PORT_NUMBER" # Is that particular port

open?

grep -w matches whole words only,

#+ so this wouldn't match port 1025, for example.

exit 0

25/tcp open smtp

nc

The nc (netcat) utility is a complete toolkit for connecting to and listening to TCP
and UDP ports. It is useful as a diagnostic and testing tool and as a component in
simple script-based HTTP clients and servers.

bash$ nc localhost.localdomain 25

220 localhost.localdomain ESMTP Sendmail 8.13.1/8.13.1; Thu, 31

Mar 2005 15:41:35 -0700

Example 13-5. Checking a remote server for identd

#! /bin/sh

Duplicate DaveG's ident-scan thingie using netcat. Oooh,

he'll be p*ssed.

Args: target port [port port port ...]

Hose stdout _and_ stderr together.

Advantages: runs slower than ident-scan, giving remote inetd

less cause

##+ for alarm, and only hits the few known daemon ports you

specify.

Disadvantages: requires numeric-only port args, the output

sleazitude,

##+ and won't work for r-services when coming from high source

ports.

Script author: Hobbit <hobbit@avian.org>

Used in ABS Guide with permission.

E_BADARGS=65 # Need at least two args.

TWO_WINKS=2 # How long to sleep.

THREE_WINKS=3

IDPORT=113 # Authentication "tap ident" port.

RAND1=999

RAND2=31337

TIMEOUT0=9

TIMEOUT1=8

TIMEOUT2=4

case "${2}" in

 "") echo "Need HOST and at least one PORT." ; exit $E_BADARGS

;;

esac

Ping 'em once and see if they *are* running identd.

nc -z -w $TIMEOUT0 "$1" $IDPORT || { echo "Oops, $1 isn't

running identd." ; exit 0 ; }

-z scans for listening daemons.

-w $TIMEOUT = How long to try to connect.

Generate a randomish base port.

RP=`expr $$ % $RAND1 + $RAND2`

TRG="$1"

shift

while test "$1" ; do

 nc -v -w $TIMEOUT1 -p ${RP} "$TRG" ${1} < /dev/null >

/dev/null &

 PROC=$!

 sleep $THREE_WINKS

 echo "${1},${RP}" | nc -w $TIMEOUT2 -r "$TRG" $IDPORT 2>&1

 sleep $TWO_WINKS

Does this look like a lamer script or what . . . ?

ABS Guide author comments: "It ain't really all that bad,

#+ rather clever, actually."

 kill -HUP $PROC

 RP=`expr ${RP} + 1`

 shift

done

exit $?

Notes:

Try commenting out line 30 and running this script

#+ with "localhost.localdomain 25" as arguments.

For more of Hobbit's 'nc' example scripts,

#+ look in the documentation:

#+ the /usr/share/doc/nc-X.XX/scripts directory.

And, of course, there's Dr. Andrew Tridgell's notorious one-line script in the
BitKeeper Affair:

echo clone | nc thunk.org 5000 > e2fsprogs.dat

free

Shows memory and cache usage in tabular form. The output of this command
lends itself to parsing, using grep, awk or Perl. The procinfo command shows all
the information that free does, and much more.

bash$ free

 total used free shared

buffers cached

 Mem: 30504 28624 1880 15820

1608 16376

 -/+ buffers/cache: 10640 19864

 Swap: 68540 3128 65412

To show unused RAM memory:

bash$ free | grep Mem | awk '{ print $4 }'

1880

procinfo

Extract and list information and statistics from the /proc pseudo-filesystem. This
gives a very extensive and detailed listing.

bash$ procinfo | grep Bootup

Bootup: Wed Mar 21 15:15:50 2001 Load average: 0.04 0.21 0.34

3/47 6829

lsdev

List devices, that is, show installed hardware.

bash$ lsdev

Device DMA IRQ I/O Ports

 --

 cascade 4 2

 dma 0080-008f

 dma1 0000-001f

 dma2 00c0-00df

 fpu 00f0-00ff

 ide0 14 01f0-01f7 03f6-03f6

 ...

du

Show (disk) file usage, recursively. Defaults to current working directory, unless
otherwise specified.

bash$ du -ach

1.0k ./wi.sh

 1.0k ./tst.sh

 1.0k ./random.file

 6.0k .

 6.0k total

df

Shows filesystem usage in tabular form.

bash$ df

Filesystem 1k-blocks Used Available Use% Mounted

on

 /dev/hda5 273262 92607 166547 36% /

 /dev/hda8 222525 123951 87085 59% /home

 /dev/hda7 1408796 1075744 261488 80% /usr

dmesg

Lists all system bootup messages to stdout. Handy for debugging and
ascertaining which device drivers were installed and which system interrupts in
use. The output of dmesg may, of course, be parsed with grep, sed, or awk from
within a script.

bash$ dmesg | grep hda

Kernel command line: ro root=/dev/hda2

 hda: IBM-DLGA-23080, ATA DISK drive

 hda: 6015744 sectors (3080 MB) w/96KiB Cache, CHS=746/128/63

 hda: hda1 hda2 hda3 < hda5 hda6 hda7 > hda4

stat

Gives detailed and verbose statistics on a given file (even a directory or device
file) or set of files.

bash$ stat test.cru

 File: "test.cru"

 Size: 49970 Allocated Blocks: 100 Filetype:

Regular File

 Mode: (0664/-rw-rw-r--) Uid: (501/ bozo) Gid: (

501/ bozo)

 Device: 3,8 Inode: 18185 Links: 1

 Access: Sat Jun 2 16:40:24 2001

 Modify: Sat Jun 2 16:40:24 2001

 Change: Sat Jun 2 16:40:24 2001

If the target file does not exist, stat returns an error message.

bash$ stat nonexistent-file

nonexistent-file: No such file or directory

vmstat

Display virtual memory statistics.

bash$ vmstat

 procs memory swap io system

cpu

 r b w swpd free buff cache si so bi bo in

cs us sy id

 0 0 0 0 11040 2636 38952 0 0 33 7 271

88 8 3 89

netstat

Show current network statistics and information, such as routing tables and active

connections. This utility accesses information in /proc/net (Chapter 27). See
Example 27-3.

netstat -r is equivalent to route.

bash$ netstat

Active Internet connections (w/o servers)

 Proto Recv-Q Send-Q Local Address Foreign Address

State

 Active UNIX domain sockets (w/o servers)

 Proto RefCnt Flags Type State I-Node Path

 unix 11 [] DGRAM 906

/dev/log

 unix 3 [] STREAM CONNECTED 4514

/tmp/.X11-unix/X0

 unix 3 [] STREAM CONNECTED 4513

 . . .

uptime

Shows how long the system has been running, along with associated statistics.

bash$ uptime

10:28pm up 1:57, 3 users, load average: 0.17, 0.34, 0.27

A load average of 1 or less indicates that the system handles processes
immediately. A load average greater than 1 means that processes are being
queued. When the load average gets above 3, then system performance is
significantly degraded.

hostname

Lists the system's host name. This command sets the host name in an /etc/rc.d

setup script (/etc/rc.d/rc.sysinit or similar). It is equivalent to uname -n,
and a counterpart to the $HOSTNAME internal variable.

bash$ hostname

localhost.localdomain

bash$ echo $HOSTNAME

localhost.localdomain

Similar to the hostname command are the domainname, dnsdomainname,
nisdomainname, and ypdomainname commands. Use these to display or set the
system DNS or NIS/YP domain name. Various options to hostname also perform
these functions.

hostid

Echo a 32-bit hexadecimal numerical identifier for the host machine.

bash$ hostid

7f0100

This command allegedly fetches a "unique" serial number for a particular
system. Certain product registration procedures use this number to brand a
particular user license. Unfortunately, hostid only returns the machine
network address in hexadecimal, with pairs of bytes transposed.

The network address of a typical non-networked Linux machine, is found in

/etc/hosts.

bash$ cat /etc/hosts

127.0.0.1 localhost.localdomain

localhost

As it happens, transposing the bytes of 127.0.0.1, we get 0.127.1.0,

which translates in hex to 007f0100, the exact equivalent of what hostid
returns, above. There exist only a few million other Linux machines with
this identical hostid.

sar

Invoking sar (System Activity Reporter) gives a very detailed rundown on system
statistics. The Santa Cruz Operation ("Old" SCO) released sar as Open Source in
June, 1999.

This command is not part of the base Linux distribution, but may be obtained as
part of the sysstat utilities package, written by Sebastien Godard.

bash$ sar

Linux 2.4.9 (brooks.seringas.fr) 09/26/03

10:30:00 CPU %user %nice %system %iowait

%idle

10:40:00 all 2.21 10.90 65.48 0.00

21.41

10:50:00 all 3.36 0.00 72.36 0.00

24.28

11:00:00 all 1.12 0.00 80.77 0.00

18.11

Average: all 2.23 3.63 72.87 0.00

21.27

14:32:30 LINUX RESTART

15:00:00 CPU %user %nice %system %iowait

%idle

15:10:00 all 8.59 2.40 17.47 0.00

71.54

15:20:00 all 4.07 1.00 11.95 0.00

82.98

15:30:00 all 0.79 2.94 7.56 0.00

88.71

Average: all 6.33 1.70 14.71 0.00

77.26

readelf

Show information and statistics about a designated elf binary. This is part of the
binutils package.

bash$ readelf -h /bin/bash

ELF Header:

 Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00

 Class: ELF32

 Data: 2's complement, little

endian

 Version: 1 (current)

 OS/ABI: UNIX - System V

 ABI Version: 0

 Type: EXEC (Executable file)

 . . .

size

The size [/path/to/binary] command gives the segment sizes of a binary
executable or archive file. This is mainly of use to programmers.

bash$ size /bin/bash

 text data bss dec hex filename

 495971 22496 17392 535859 82d33 /bin/bash

System Logs

logger

Appends a user-generated message to the system log (/var/log/messages). You
do not have to be root to invoke logger.

logger Experiencing instability in network connection at 23:10,

05/21.

Now, do a 'tail /var/log/messages'.

By embedding a logger command in a script, it is possible to write debugging

information to /var/log/messages.

logger -t $0 -i Logging at line "$LINENO".

The "-t" option specifies the tag for the logger entry.

The "-i" option records the process ID.

tail /var/log/message

...

Jul 7 20:48:58 localhost ./test.sh[1712]: Logging at line 3.

logrotate

This utility manages the system log files, rotating, compressing, deleting, and/or

e-mailing them, as appropriate. This keeps the /var/log from getting cluttered
with old log files. Usually cron runs logrotate on a daily basis.

Adding an appropriate entry to /etc/logrotate.conf makes it possible to
manage personal log files, as well as system-wide ones.

Stefano Falsetto has created rottlog, which he considers to be an improved
version of logrotate.

Job Control

ps

Process Statistics: lists currently executing processes by owner and PID (process

ID). This is usually invoked with ax or aux options, and may be piped to grep or
sed to search for a specific process (see Example 11-12 and Example 27-2).

bash$ ps ax | grep sendmail

295 ? S 0:00 sendmail: accepting connections on port 25

To display system processes in graphical "tree" format: ps afjx or ps ax --forest.

pgrep, pkill

Combining the ps command with grep or kill.

bash$ ps a | grep mingetty

2212 tty2 Ss+ 0:00 /sbin/mingetty tty2

 2213 tty3 Ss+ 0:00 /sbin/mingetty tty3

 2214 tty4 Ss+ 0:00 /sbin/mingetty tty4

 2215 tty5 Ss+ 0:00 /sbin/mingetty tty5

 2216 tty6 Ss+ 0:00 /sbin/mingetty tty6

 4849 pts/2 S+ 0:00 grep mingetty

bash$ pgrep mingetty

2212 mingetty

 2213 mingetty

 2214 mingetty

 2215 mingetty

 2216 mingetty

pstree

Lists currently executing processes in "tree" format. The -p option shows the
PIDs, as well as the process names.

top

Continuously updated display of most cpu-intensive processes. The -b option
displays in text mode, so that the output may be parsed or accessed from a script.

bash$ top -b

 8:30pm up 3 min, 3 users, load average: 0.49, 0.32, 0.13

 45 processes: 44 sleeping, 1 running, 0 zombie, 0 stopped

 CPU states: 13.6% user, 7.3% system, 0.0% nice, 78.9% idle

 Mem: 78396K av, 65468K used, 12928K free, 0K shrd,

2352K buff

 Swap: 157208K av, 0K used, 157208K free

37244K cached

 PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME

COMMAND

 848 bozo 17 0 996 996 800 R 5.6 1.2 0:00

top

 1 root 8 0 512 512 444 S 0.0 0.6 0:04

init

 2 root 9 0 0 0 0 SW 0.0 0.0 0:00

keventd

 ...

nice

Run a background job with an altered priority. Priorities run from 19 (lowest) to -
20 (highest). Only root may set the negative (higher) priorities. Related
commands are renice, snice, and skill.

nohup

Keeps a command running even after user logs off. The command will run as a
foreground process unless followed by &. If you use nohup within a script,
consider coupling it with a wait to avoid creating an orphan or zombie process.

pidof

Identifies process ID (PID) of a running job. Since job control commands, such as
kill and renice act on the PID of a process (not its name), it is sometimes
necessary to identify that PID. The pidof command is the approximate
counterpart to the $PPID internal variable.

bash$ pidof xclock

880

Example 13-6. pidof helps kill a process

#!/bin/bash

kill-process.sh

NOPROCESS=2

process=xxxyyyzzz # Use nonexistent process.

For demo purposes only...

... don't want to actually kill any actual process with this

script.

If, for example, you wanted to use this script to logoff the

Internet,

process=pppd

t=`pidof $process` # Find pid (process id) of $process.

The pid is needed by 'kill' (can't 'kill' by program name).

if [-z "$t"] # If process not present, 'pidof'

returns null.

then

 echo "Process $process was not running."

 echo "Nothing killed."

 exit $NOPROCESS

fi

kill $t # May need 'kill -9' for stubborn

process.

Need a check here to see if process allowed itself to be

killed.

Perhaps another " t=`pidof $process` " or ...

This entire script could be replaced by

kill $(pidof -x process_name)

but it would not be as instructive.

exit 0

fuser

Identifies the processes (by PID) that are accessing a given file, set of files, or

directory. May also be invoked with the -k option, which kills those processes.
This has interesting implications for system security, especially in scripts
preventing unauthorized users from accessing system services.

bash$ fuser -u /usr/bin/vim

/usr/bin/vim: 3207e(bozo)

bash$ fuser -u /dev/null

/dev/null: 3009(bozo) 3010(bozo) 3197(bozo)

3199(bozo)

One important application for fuser is when physically inserting or removing
storage media, such as CD ROM disks or USB flash drives. Sometimes trying a
umount fails with a device is busy error message. This means that some user(s)
and/or process(es) are accessing the device. An fuser -um /dev/device_name will
clear up the mystery, so you can kill any relevant processes.

bash$ umount /mnt/usbdrive

umount: /mnt/usbdrive: device is busy

bash$ fuser -um /dev/usbdrive

/mnt/usbdrive: 1772c(bozo)

bash$ kill -9 1772

bash$ umount /mnt/usbdrive

The fuser command, invoked with the -n option identifies the processes
accessing a port. This is especially useful in combination with nmap.

root# nmap localhost.localdomain

PORT STATE SERVICE

 25/tcp open smtp

root# fuser -un tcp 25

25/tcp: 2095(root)

root# ps ax | grep 2095 | grep -v grep

2095 ? Ss 0:00 sendmail: accepting connections

cron

Administrative program scheduler, performing such duties as cleaning up and
deleting system log files and updating the slocate database. This is the superuser

version of at (although each user may have their own crontab file which can be
changed with the crontab command). It runs as a daemon and executes scheduled

entries from /etc/crontab.

Some flavors of Linux run crond, Matthew Dillon's version of cron.

Process Control and Booting

init

The init command is the parent of all processes. Called in the final step of a

bootup, init determines the runlevel of the system from /etc/inittab. Invoked
by its alias telinit, and by root only.

telinit

Symlinked to init, this is a means of changing the system runlevel, usually done
for system maintenance or emergency filesystem repairs. Invoked only by root.
This command can be dangerous - be certain you understand it well before using!

runlevel

Shows the current and last runlevel, that is, whether the system is halted (runlevel

0), in single-user mode (1), in multi-user mode (2 or 3), in X Windows (5), or

rebooting (6). This command accesses the /var/run/utmp file.

halt, shutdown, reboot

Command set to shut the system down, usually just prior to a power down.

service

Starts or stops a system service. The startup scripts in /etc/init.d and

/etc/rc.d use this command to start services at bootup.

root# /sbin/service iptables stop

Flushing firewall rules: [OK

]

 Setting chains to policy ACCEPT: filter [

OK]

 Unloading iptables modules: [

OK]

Network

ifconfig

Network interface configuration and tuning utility.

bash$ ifconfig -a

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 UP LOOPBACK RUNNING MTU:16436 Metric:1

 RX packets:10 errors:0 dropped:0 overruns:0 frame:0

 TX packets:10 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:700 (700.0 b) TX bytes:700 (700.0 b)

The ifconfig command is most often used at bootup to set up the interfaces, or to
shut them down when rebooting.

Code snippets from /etc/rc.d/init.d/network

...

Check that networking is up.

[${NETWORKING} = "no"] && exit 0

[-x /sbin/ifconfig] || exit 0

...

for i in $interfaces ; do

 if ifconfig $i 2>/dev/null | grep -q "UP" >/dev/null 2>&1 ;

then

 action "Shutting down interface $i: " ./ifdown $i boot

 fi

The GNU-specific "-q" option to "grep" means "quiet", i.e.,

producing no output.

Redirecting output to /dev/null is therefore not strictly

necessary.

...

echo "Currently active devices:"

echo `/sbin/ifconfig | grep ^[a-z] | awk '{print $1}'`

^^^^^ should be quoted to prevent

globbing.

The following also work.

echo $(/sbin/ifconfig | awk '/^[a-z]/ { print $1 })'

echo $(/sbin/ifconfig | sed -e 's/ .*//')

Thanks, S.C., for additional comments.

See also Example 29-6.

iwconfig

This is the command set for configuring a wireless network. It is the wireless
equivalent of ifconfig, above.

route

Show info about or make changes to the kernel routing table.

bash$ route

Destination Gateway Genmask Flags MSS

Window irtt Iface

 pm3-67.bozosisp * 255.255.255.255 UH 40 0

0 ppp0

 127.0.0.0 * 255.0.0.0 U 40 0

0 lo

 default pm3-67.bozosisp 0.0.0.0 UG 40 0

0 ppp0

chkconfig

Check network configuration. This command lists and manages the network

services started at bootup in the /etc/rc?.d directory.

Originally a port from IRIX to Red Hat Linux, chkconfig may not be part of the
core installation of some Linux flavors.

bash$ chkconfig --list

atd 0:off 1:off 2:off 3:on 4:on 5:on

6:off

 rwhod 0:off 1:off 2:off 3:off 4:off 5:off

6:off

 ...

tcpdump

Network packet "sniffer". This is a tool for analyzing and troubleshooting traffic
on a network by dumping packet headers that match specified criteria.

Dump ip packet traffic between hosts bozoville and caduceus:

bash$ tcpdump ip host bozoville and caduceus

Of course, the output of tcpdump can be parsed, using certain of the previously
discussed text processing utilities.

Filesystem

mount

Mount a filesystem, usually on an external device, such as a floppy or CDROM.

The file /etc/fstab provides a handy listing of available filesystems, partitions,
and devices, including options, that may be automatically or manually mounted.

The file /etc/mtab shows the currently mounted filesystems and partitions
(including the virtual ones, such as /proc).

mount -a mounts all filesystems and partitions listed in /etc/fstab, except those

with a noauto option. At bootup, a startup script in /etc/rc.d (rc.sysinit or
something similar) invokes this to get everything mounted.

mount -t iso9660 /dev/cdrom /mnt/cdrom

Mounts CDROM

mount /mnt/cdrom

Shortcut, if /mnt/cdrom listed in /etc/fstab

This versatile command can even mount an ordinary file on a block device, and
the file will act as if it were a filesystem. Mount accomplishes that by associating
the file with a loopback device. One application of this is to mount and examine
an ISO9660 image before burning it onto a CDR. [3]

Example 13-7. Checking a CD image

As root...

mkdir /mnt/cdtest # Prepare a mount point, if not already

there.

mount -r -t iso9660 -o loop cd-image.iso /mnt/cdtest # Mount

the image.

"-o loop" option equivalent to "losetup

/dev/loop0"

cd /mnt/cdtest # Now, check the image.

ls -alR # List the files in the directory tree there.

 # And so forth.

umount

Unmount a currently mounted filesystem. Before physically removing a
previously mounted floppy or CDROM disk, the device must be umounted, else
filesystem corruption may result.

umount /mnt/cdrom

You may now press the eject button and safely remove the disk.

The automount utility, if properly installed, can mount and unmount
floppies or CDROM disks as they are accessed or removed. On laptops with
swappable floppy and CDROM drives, this can cause problems, though.

sync

Forces an immediate write of all updated data from buffers to hard drive
(synchronize drive with buffers). While not strictly necessary, a sync assures the
sys admin or user that the data just changed will survive a sudden power failure.

In the olden days, a sync; sync (twice, just to make absolutely sure) was a useful
precautionary measure before a system reboot.

At times, you may wish to force an immediate buffer flush, as when securely
deleting a file (see Example 12-55) or when the lights begin to flicker.

losetup

Sets up and configures loopback devices.

Example 13-8. Creating a filesystem in a file

SIZE=1000000 # 1 meg

head -c $SIZE < /dev/zero > file # Set up file of designated

size.

losetup /dev/loop0 file # Set it up as loopback

device.

mke2fs /dev/loop0 # Create filesystem.

mount -o loop /dev/loop0 /mnt # Mount it.

Thanks, S.C.

mkswap

Creates a swap partition or file. The swap area must subsequently be enabled with
swapon.

swapon, swapoff

Enable / disable swap partitition or file. These commands usually take effect at
bootup and shutdown.

mke2fs

Create a Linux ext2 filesystem. This command must be invoked as root.

Example 13-9. Adding a new hard drive

#!/bin/bash

Adding a second hard drive to system.

Software configuration. Assumes hardware already mounted.

From an article by the author of this document.

In issue #38 of "Linux Gazette", http://www.linuxgazette.com.

ROOT_UID=0 # This script must be run as root.

E_NOTROOT=67 # Non-root exit error.

if ["$UID" -ne "$ROOT_UID"]

then

 echo "Must be root to run this script."

 exit $E_NOTROOT

fi

Use with extreme caution!

If something goes wrong, you may wipe out your current

filesystem.

NEWDISK=/dev/hdb # Assumes /dev/hdb vacant. Check!

MOUNTPOINT=/mnt/newdisk # Or choose another mount point.

fdisk $NEWDISK

mke2fs -cv $NEWDISK1 # Check for bad blocks & verbose output.

Note: /dev/hdb1, *not* /dev/hdb!

mkdir $MOUNTPOINT

chmod 777 $MOUNTPOINT # Makes new drive accessible to all

users.

Now, test...

mount -t ext2 /dev/hdb1 /mnt/newdisk

Try creating a directory.

If it works, umount it, and proceed.

Final step:

Add the following line to /etc/fstab.

/dev/hdb1 /mnt/newdisk ext2 defaults 1 1

exit 0

See also Example 13-8 and Example 28-3.

tune2fs

Tune ext2 filesystem. May be used to change filesystem parameters, such as
maximum mount count. This must be invoked as root.

This is an extremely dangerous command. Use it at your own risk, as you
may inadvertently destroy your filesystem.

dumpe2fs

Dump (list to stdout) very verbose filesystem info. This must be invoked as root.

root# dumpe2fs /dev/hda7 | grep 'ount count'

dumpe2fs 1.19, 13-Jul-2000 for EXT2 FS 0.5b, 95/08/09

 Mount count: 6

 Maximum mount count: 20

hdparm

List or change hard disk parameters. This command must be invoked as root, and
it may be dangerous if misused.

fdisk

Create or change a partition table on a storage device, usually a hard drive. This
command must be invoked as root.

Use this command with extreme caution. If something goes wrong, you may
destroy an existing filesystem.

fsck, e2fsck, debugfs

Filesystem check, repair, and debug command set.

fsck: a front end for checking a UNIX filesystem (may invoke other utilities). The
actual filesystem type generally defaults to ext2.

e2fsck: ext2 filesystem checker.

debugfs: ext2 filesystem debugger. One of the uses of this versatile, but
dangerous command is to (attempt to) recover deleted files. For advanced users
only!

All of these should be invoked as root, and they can damage or destroy a
filesystem if misused.

badblocks

Checks for bad blocks (physical media flaws) on a storage device. This command
finds use when formatting a newly installed hard drive or testing the integrity of
backup media. [4] As an example, badblocks /dev/fd0 tests a floppy disk.

The badblocks command may be invoked destructively (overwrite all data) or in
non-destructive read-only mode. If root user owns the device to be tested, as is
generally the case, then root must invoke this command.

lsusb, usbmodules

The lsusb command lists all USB (Universal Serial Bus) buses and the devices
hooked up to them.

The usbmodules command outputs information about the driver modules for
connected USB devices.

root# lsusb

Bus 001 Device 001: ID 0000:0000

 Device Descriptor:

 bLength 18

 bDescriptorType 1

 bcdUSB 1.00

 bDeviceClass 9 Hub

 bDeviceSubClass 0

 bDeviceProtocol 0

 bMaxPacketSize0 8

 idVendor 0x0000

 idProduct 0x0000

 . . .

mkbootdisk

Creates a boot floppy which can be used to bring up the system if, for example,
the MBR (master boot record) becomes corrupted. The mkbootdisk command is

actually a Bash script, written by Erik Troan, in the /sbin directory.

chroot

CHange ROOT directory. Normally commands are fetched from $PATH, relative

to /, the default root directory. This changes the root directory to a different one
(and also changes the working directory to there). This is useful for security
purposes, for instance when the system administrator wishes to restrict certain
users, such as those telnetting in, to a secured portion of the filesystem (this is
sometimes referred to as confining a guest user to a "chroot jail"). Note that after
a chroot, the execution path for system binaries is no longer valid.

A chroot /opt would cause references to /usr/bin to be translated to

/opt/usr/bin. Likewise, chroot /aaa/bbb /bin/ls would redirect future
instances of ls to /aaa/bbb as the base directory, rather than / as is normally the

case. An alias XX 'chroot /aaa/bbb ls' in a user's ~/.bashrc effectively restricts
which portion of the filesystem she may run command "XX" on.

The chroot command is also handy when running from an emergency boot floppy

(chroot to /dev/fd0), or as an option to lilo when recovering from a system
crash. Other uses include installation from a different filesystem (an rpm option)
or running a readonly filesystem from a CD ROM. Invoke only as root, and use
with care.

It might be necessary to copy certain system files to a chrooted directory,

since the normal $PATH can no longer be relied upon.

lockfile

This utility is part of the procmail package (www.procmail.org). It creates a lock

file, a semaphore file that controls access to a file, device, or resource. The lock
file serves as a flag that this particular file, device, or resource is in use by a

particular process ("busy"), and this permits only restricted access (or no access)
to other processes.

lockfile /home/bozo/lockfiles/$0.lock

Creates a write-protected lockfile prefixed with the name of

the script.

Lock files are used in such applications as protecting system mail folders from
simultaneously being changed by multiple users, indicating that a modem port is
being accessed, and showing that an instance of Netscape is using its cache.
Scripts may check for the existence of a lock file created by a certain process to
check if that process is running. Note that if a script attempts to create a lock file
that already exists, the script will likely hang.

Normally, applications create and check for lock files in the /var/lock directory.
[5] A script can test for the presence of a lock file by something like the
following.

appname=xyzip

Application "xyzip" created lock file "/var/lock/xyzip.lock".

if [-e "/var/lock/$appname.lock"]

then

 ...

flock

Much less useful than the lockfile command is flock. It sets an "advisory" lock on
a file and then executes a command while the lock is on. This is to prevent any
other process from setting a lock on that file until completion of the specified
command.

flock $0 cat $0 > lockfile__$0

Set a lock on the script the above line appears in,

#+ while listing the script to stdout.

Unlike lockfile, flock does not automatically create a lock file.

mknod

Creates block or character device files (may be necessary when installing new
hardware on the system). The MAKEDEV utility has virtually all of the
functionality of mknod, and is easier to use.

MAKEDEV

Utility for creating device files. It must be run as root, and in the /dev directory.

root# ./MAKEDEV

This is a sort of advanced version of mknod.

tmpwatch

Automatically deletes files which have not been accessed within a specified
period of time. Usually invoked by cron to remove stale log files.

Backup

dump, restore

The dump command is an elaborate filesystem backup utility, generally used on
larger installations and networks. [6] It reads raw disk partitions and writes a
backup file in a binary format. Files to be backed up may be saved to a variety of
storage media, including disks and tape drives. The restore command restores
backups made with dump.

fdformat

Perform a low-level format on a floppy disk.

System Resources

ulimit

Sets an upper limit on use of system resources. Usually invoked with the -f
option, which sets a limit on file size (ulimit -f 1000 limits files to 1 meg

maximum). The -t option limits the coredump size (ulimit -c 0 eliminates

coredumps). Normally, the value of ulimit would be set in /etc/profile and/or

~/.bash_profile (see Appendix G).

Judicious use of ulimit can protect a system against the dreaded fork bomb.

#!/bin/bash

This script is for illustrative purposes only.

Run it at your own peril -- it *will* freeze your

system.

while true # Endless loop.

do

 $0 & # This script invokes itself . . .

 #+ forks an infinite number of times . . .

 #+ until the system freezes up because all

resources exhausted.

done # This is the notorious "sorcerer's

appentice" scenario.

exit 0 # Will not exit here, because this script

will never terminate.

A ulimit -Hu XX (where XX is the user process limit) in /etc/profile
would abort this script when it exceeds the preset limit.

quota

Display user or group disk quotas.

setquota

Set user or group disk quotas from the command line.

umask

User file creation permissions mask. Limit the default file attributes for a
particular user. All files created by that user take on the attributes specified by
umask. The (octal) value passed to umask defines the file permissions disabled.
For example, umask 022 ensures that new files will have at most 755 permissions
(777 NAND 022). [7] Of course, the user may later change the attributes of
particular files with chmod. The usual practice is to set the value of umask in

/etc/profile and/or ~/.bash_profile (see Appendix G).

Example 13-10. Using umask to hide an output file from prying eyes

#!/bin/bash

rot13a.sh: Same as "rot13.sh" script, but writes output to

"secure" file.

Usage: ./rot13a.sh filename

or ./rot13a.sh <filename

or ./rot13a.sh and supply keyboard input (stdin)

umask 177 # File creation mask.

 # Files created by this script

 #+ will have 600 permissions.

OUTFILE=decrypted.txt # Results output to file

"decrypted.txt"

 #+ which can only be read/written

 # by invoker of script (or root).

cat "$@" | tr 'a-zA-Z' 'n-za-mN-ZA-M' > $OUTFILE

^^ Input from stdin or a file. ^^^^^^^^^^ Output

redirected to file.

exit 0

rdev

Get info about or make changes to root device, swap space, or video mode. The
functionality of rdev has generally been taken over by lilo, but rdev remains
useful for setting up a ram disk. This is a dangerous command, if misused.

Modules

lsmod

List installed kernel modules.

bash$ lsmod

Module Size Used by

 autofs 9456 2 (autoclean)

 opl3 11376 0

 serial_cs 5456 0 (unused)

 sb 34752 0

 uart401 6384 0 [sb]

 sound 58368 0 [opl3 sb uart401]

 soundlow 464 0 [sound]

 soundcore 2800 6 [sb sound]

 ds 6448 2 [serial_cs]

 i82365 22928 2

 pcmcia_core 45984 0 [serial_cs ds i82365]

Doing a cat /proc/modules gives the same information.

insmod

Force installation of a kernel module (use modprobe instead, when possible).
Must be invoked as root.

rmmod

Force unloading of a kernel module. Must be invoked as root.

modprobe

Module loader that is normally invoked automatically in a startup script. Must be
invoked as root.

depmod

Creates module dependency file, usually invoked from startup script.

modinfo

Output information about a loadable module.

bash$ modinfo hid

filename: /lib/modules/2.4.20-6/kernel/drivers/usb/hid.o

 description: "USB HID support drivers"

 author: "Andreas Gal, Vojtech Pavlik <vojtech@suse.cz>"

 license: "GPL"

Miscellaneous

env

Runs a program or script with certain environmental variables set or changed

(without changing the overall system environment). The [varname=xxx] permits

changing the environmental variable varname for the duration of the script. With
no options specified, this command lists all the environmental variable settings.

In Bash and other Bourne shell derivatives, it is possible to set variables in a
single command's environment.

var1=value1 var2=value2 commandXXX

$var1 and $var2 set in the environment of

'commandXXX' only.

The first line of a script (the "sha-bang" line) may use env when the path to
the shell or interpreter is unknown.

#! /usr/bin/env perl

print "This Perl script will run,\n";

print "even when I don't know where to find Perl.\n";

Good for portable cross-platform scripts,

where the Perl binaries may not be in the expected

place.

Thanks, S.C.

ldd

Show shared lib dependencies for an executable file.

bash$ ldd /bin/ls

libc.so.6 => /lib/libc.so.6 (0x4000c000)

/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x80000000)

watch

Run a command repeatedly, at specified time intervals.

The default is two-second intervals, but this may be changed with the -n option.

watch -n 5 tail /var/log/messages

Shows tail end of system log, /var/log/messages, every five

seconds.

strip

Remove the debugging symbolic references from an executable binary. This
decreases its size, but makes debugging it impossible.

This command often occurs in a Makefile, but rarely in a shell script.

nm

List symbols in an unstripped compiled binary.

rdist

Remote distribution client: synchronizes, clones, or backs up a file system on a
remote server.

Notes

[1] This is the case on a Linux machine or a UNIX system with disk quotas.

[2] The userdel command will fail if the particular user being deleted is still logged on.

[3] For more detail on burning CDRs, see Alex Withers' article, Creating CDs, in the
October, 1999 issue of Linux Journal.

[4] The -c option to mke2fs also invokes a check for bad blocks.

[5] Since only root has write permission in the /var/lock directory, a user script cannot
set a lock file there.

[6] Operators of single-user Linux systems generally prefer something simpler for
backups, such as tar.

[7] NAND is the logical not-and operator. Its effect is somewhat similar to subtraction.

